
Iteration and Simulation in R

Natalia Vasilenok

Math Camp
Department of Political Science

Stanford University

September 9, 2024

Iteration and Simulation in R September 9, 2024 1 / 35

Roadmap

1. Iteration

▶ The map() family
▶ The apply() family

2. Simulation

Iteration and Simulation in R September 9, 2024 2 / 35

Applying a function to each element of a vector

Suppose X = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, and 𝑓(𝑥) = (𝑥 + 1)2. Let’s define
the function 𝑔 that will apply the function 𝑓 to each element of
the vector X:

X′ = 𝑔(X, 𝑓)

X 0 1 3 8
X′ 1 4 16 81

Iteration and Simulation in R September 9, 2024 3 / 35

Applying a function to each element of a vector

Suppose X = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, and 𝑓(𝑥) = (𝑥 + 1)2. Let’s define
the function 𝑔 that will apply the function 𝑓 to each element of
the vector X:

X′ = 𝑔(X, 𝑓)

X 0 1 3 8
X′ 1 4 16 81

Iteration and Simulation in R September 9, 2024 4 / 35

Applying a function to each element of a vector

Suppose X = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, and 𝑓(𝑥) = (𝑥 + 1)2. Let’s define
the function 𝑔 that will apply the function 𝑓 to each element of
the vector X:

X′ = 𝑔(X, 𝑓)

X 0 1 3 8
X′ 1 4 16 81

Iteration and Simulation in R September 9, 2024 5 / 35

Applying a function to each element of a vector

Suppose X = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, and 𝑓(𝑥) = (𝑥 + 1)2. Let’s define
the function 𝑔 that will apply the function 𝑓 to each element of
the vector X:

X′ = 𝑔(X, 𝑓)

X 0 1 3 8
X′ 1 4 16 81

Iteration and Simulation in R September 9, 2024 6 / 35

Functionals

X′ = 𝑔(X, 𝑓)

In R, 𝑔 is called a functional, a function that takes another
function as an argument and returns a data object (a list, a vector,
or a data frame). Functionals are a more efficient alternative to
for loops.

Iteration and Simulation in R September 9, 2024 7 / 35

Exercise: for loop refresher

Write a for loop that applies 𝑓(𝑥) = (𝑥 + 1)2 to each element of
a vector x

x = c(0, 1, 3, 8)

and stores the results in a vector y.

Iteration and Simulation in R September 9, 2024 8 / 35

Exercise: for loop refresher

x = c(0, 1, 3, 8)
y = c()

for(i in 1:length(x)){
y[i] = (x[i]+1)^2

}

y

[1] 1 4 16 81

Iteration and Simulation in R September 9, 2024 9 / 35

purrr

install.packages("purrr")
library(purrr)

source: @weirdlilguys on Twitter
Iteration and Simulation in R September 9, 2024 10 / 35

https://twitter.com/weirdlilguys/status/1700126704969118064/photo/1

The map() family

The purrr package provides a family of map functions that are broadly
used for iteration. The map() functions take as argument a vector, a list,
or a data frame (.x) along with a function (.f), and return an object of
a type specified in a function name:

▶ map(.x, .f) returns a list
▶ map_lgl(.x, .f) returns a logical vector
▶ map_int(.x, .f) returns an integer vector
▶ map_dbl(.x, .f) returns a double vector
▶ map_chr(.x, .f) returns a character vector

Iteration and Simulation in R September 9, 2024 11 / 35

The map() family

We can rewrite the for loop we wrote above with a map_dbl() function:

f <- function(x) (x+1)^2
map_dbl(x, f)

[1] 1 4 16 81

You don’t have to create a new function; you can pass an anonymous
function as an argument instead:

map_dbl(x, function(x) (x+1)^2)

[1] 1 4 16 81

Iteration and Simulation in R September 9, 2024 12 / 35

The map() family

We can rewrite the for loop we wrote above with a map_dbl() function:

f <- function(x) (x+1)^2
map_dbl(x, f)

[1] 1 4 16 81

You don’t have to create a new function; you can pass an anonymous
function as an argument instead:

map_dbl(x, function(x) (x+1)^2)

[1] 1 4 16 81

Iteration and Simulation in R September 9, 2024 12 / 35

Run multiple regressions with map()
Writing an empirical paper, you will need to run multiple specifications of
your regressions trying to convince your future readers (and yourself)
that your results are robust. Constantly copying and pasting m = lm(y
∼ x, data = df) might be a bad coding practice. Try to use the
map() function instead.

data(mtcars)

formulas <- list(
mpg ~ hp,
mpg ~ hp + wt,
mpg ~ hp + wt + I(wt^2)

)

models = map(formulas, function(x) lm(x, data = mtcars))

class(models)

[1] "list"

Iteration and Simulation in R September 9, 2024 13 / 35

Run multiple regressions with map()
Writing an empirical paper, you will need to run multiple specifications of
your regressions trying to convince your future readers (and yourself)
that your results are robust. Constantly copying and pasting m = lm(y
∼ x, data = df) might be a bad coding practice. Try to use the
map() function instead.

data(mtcars)

formulas <- list(
mpg ~ hp,
mpg ~ hp + wt,
mpg ~ hp + wt + I(wt^2)

)

models = map(formulas, function(x) lm(x, data = mtcars))

class(models)

[1] "list"
Iteration and Simulation in R September 9, 2024 13 / 35

Run multiple regressions with map()
library(stargazer)
stargazer(models[[1]], models[[2]], models[[3]])

Table 1:

Dependent variable:
mpg

(1) (2) (3)
hp −0.068∗∗∗ −0.032∗∗∗ −0.027∗∗∗

(0.010) (0.009) (0.008)
wt −3.878∗∗∗ −10.822∗∗∗

(0.633) (2.281)
I(wt 2̂) 0.982∗∗∗

(0.313)
Constant 30.099∗∗∗ 37.227∗∗∗ 47.837∗∗∗

(1.634) (1.599) (3.659)
Observations 32 32 32
Adjusted R2 0.589 0.815 0.858

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Iteration and Simulation in R September 9, 2024 14 / 35

Exercises

1. Find the median of all columns in the mtcar data set and
store the results in a vector.

2. Check which columns in the iris data set are numeric and
store the results in a vector (hint: to load a built-in R data set,
use data(); to check if an object is numeric use is.numeric()).

3. Write a function that takes a data set as an argument,
identifies numeric columns, and returns a vector of their
medians. Apply this function to the iris data set.

Iteration and Simulation in R September 9, 2024 15 / 35

Exercises

1. Find the median of all columns in the mtcar data set and
store the results in a vector.

a = map_dbl(mtcars, median)
a

mpg cyl disp hp drat wt qsec
19.200 6.000 196.300 123.000 3.695 3.325 17.710
vs am gear carb
0.000 0.000 4.000 2.000

Iteration and Simulation in R September 9, 2024 16 / 35

Exercises

2. Check which columns in the iris data set are numeric and
store the results in a vector.

b = map_lgl(iris, is.numeric)
b

Sepal.Length Sepal.Width Petal.Length Petal.Width
TRUE TRUE TRUE TRUE
Species
FALSE

Iteration and Simulation in R September 9, 2024 17 / 35

Exercises

3. Write a function that takes a data set as an argument,
identifies numeric columns, and returns a vector of their
medians. Apply this function to the iris data set.

num_med = function(df){
numeric_cols = map_lgl(df, is.numeric)
df_num = df[, numeric_cols]
med = map_dbl(df_num, median)
return(med)

}

c = num_med(iris)
c

Sepal.Length Sepal.Width Petal.Length Petal.Width
5.80 3.00 4.35 1.30

Iteration and Simulation in R September 9, 2024 18 / 35

Creating data frames with map_dfr() and map_dfc()
The map_df_() functions produce data frames instead of lists and
vectors. They bind individual outputs by rows (hence dfr) or columns
(hence dfc). This type of functions can be useful for reading multiple
files into R or summarizing data frames.

this line gets the names of all csv files
in a specified folder and saves them in a list
filenames = list.files(path = "data/districts/",

pattern=".csv")
this line combines each file name with a path to a file
files = paste0("data/districts/", filenames, sep= "")
files[1:2]

[1] "data/districts/alatyr.csv" "data/districts/ardatov.csv"

this line loads and binds our files into a single data frame
files %>% map_dfr(read.csv) %>% dim()

[1] 2933 93

Iteration and Simulation in R September 9, 2024 19 / 35

Producing descriptive statistics with map_dfr()

Exercise. Write a function that takes a vector as an argument and
returns a named vector with a mean and a standard deviation of a vector
and a number of non-missing values in it (hint: use complete.cases()).

sumstat = function(vec){

mean = mean(vec, na.rm = T)
sd = sd(vec, na.rm = T)
n = sum(complete.cases(vec))

return(c(mean = mean, sd = sd, n = n))
}

Iteration and Simulation in R September 9, 2024 20 / 35

Producing descriptive statistics with map_dfr()

Exercise. Write a function that takes a vector as an argument and
returns a named vector with a mean and a standard deviation of a vector
and a number of non-missing values in it (hint: use complete.cases()).

sumstat = function(vec){

mean = mean(vec, na.rm = T)
sd = sd(vec, na.rm = T)
n = sum(complete.cases(vec))

return(c(mean = mean, sd = sd, n = n))
}

Iteration and Simulation in R September 9, 2024 20 / 35

Producing descriptive statistics with map_dfr()
Now we will apply the sumstat function to some columns in the mtcars
data set. In a resulting data set, columns will correspond to the elements
of a vector that sumstat returns.

cols = mtcars %>% select(mpg, cyl, disp)
map_dfr(cols, sumstat, .id = "var")

A tibble: 3 x 4
var mean sd n
<chr> <dbl> <dbl> <dbl>
1 mpg 20.1 6.03 32
2 cyl 6.19 1.79 32
3 disp 231. 124. 32

The .id argument creates an identifying column with the names of
elements to which we applied a function (in our case, columns of the
mtcars data set); you need to pass it a string with a name of that column.

Iteration and Simulation in R September 9, 2024 21 / 35

Producing descriptive statistics with map_dfr()
Now we will apply the sumstat function to some columns in the mtcars
data set. In a resulting data set, columns will correspond to the elements
of a vector that sumstat returns.

cols = mtcars %>% select(mpg, cyl, disp)
map_dfr(cols, sumstat, .id = "var")

A tibble: 3 x 4
var mean sd n
<chr> <dbl> <dbl> <dbl>
1 mpg 20.1 6.03 32
2 cyl 6.19 1.79 32
3 disp 231. 124. 32

The .id argument creates an identifying column with the names of
elements to which we applied a function (in our case, columns of the
mtcars data set); you need to pass it a string with a name of that column.

Iteration and Simulation in R September 9, 2024 21 / 35

Another alternative to loops: the apply family
Base R has an alternative to the purrr package, which can also be used
to replace loops.

▶ lapply(X, FUN) loops over elements of a list or a vector and
makes a list

▶ mclapply(X, FUN, mc.cores) from the parallel package
helps speed up computations by parallelizing them over
multiple cores

▶ sapply(X, FUN) simplifies output of lapply() to a vector
▶ If lists produced by lapply() have more than 1 element, it

produces a matrix
▶ replicate(n, expr) repeats a function n times; useful for

random numbers generation
▶ apply(X, MARGIN, FUN) loops over rows or columns of a matrix

or a data frame
▶ You need to specify the dimension over which to iterate by

specifying MARGIN = 1 for rows or MARGIN = 2 for columns

Iteration and Simulation in R September 9, 2024 22 / 35

Another alternative to loops: the apply family
Base R has an alternative to the purrr package, which can also be used
to replace loops.

▶ lapply(X, FUN) loops over elements of a list or a vector and
makes a list

▶ mclapply(X, FUN, mc.cores) from the parallel package
helps speed up computations by parallelizing them over
multiple cores

▶ sapply(X, FUN) simplifies output of lapply() to a vector
▶ If lists produced by lapply() have more than 1 element, it

produces a matrix
▶ replicate(n, expr) repeats a function n times; useful for

random numbers generation
▶ apply(X, MARGIN, FUN) loops over rows or columns of a matrix

or a data frame
▶ You need to specify the dimension over which to iterate by

specifying MARGIN = 1 for rows or MARGIN = 2 for columns

Iteration and Simulation in R September 9, 2024 22 / 35

Another alternative to loops: the apply family
Base R has an alternative to the purrr package, which can also be used
to replace loops.

▶ lapply(X, FUN) loops over elements of a list or a vector and
makes a list

▶ mclapply(X, FUN, mc.cores) from the parallel package
helps speed up computations by parallelizing them over
multiple cores

▶ sapply(X, FUN) simplifies output of lapply() to a vector
▶ If lists produced by lapply() have more than 1 element, it

produces a matrix
▶ replicate(n, expr) repeats a function n times; useful for

random numbers generation

▶ apply(X, MARGIN, FUN) loops over rows or columns of a matrix
or a data frame

▶ You need to specify the dimension over which to iterate by
specifying MARGIN = 1 for rows or MARGIN = 2 for columns

Iteration and Simulation in R September 9, 2024 22 / 35

Another alternative to loops: the apply family
Base R has an alternative to the purrr package, which can also be used
to replace loops.

▶ lapply(X, FUN) loops over elements of a list or a vector and
makes a list

▶ mclapply(X, FUN, mc.cores) from the parallel package
helps speed up computations by parallelizing them over
multiple cores

▶ sapply(X, FUN) simplifies output of lapply() to a vector
▶ If lists produced by lapply() have more than 1 element, it

produces a matrix
▶ replicate(n, expr) repeats a function n times; useful for

random numbers generation
▶ apply(X, MARGIN, FUN) loops over rows or columns of a matrix

or a data frame
▶ You need to specify the dimension over which to iterate by

specifying MARGIN = 1 for rows or MARGIN = 2 for columns
Iteration and Simulation in R September 9, 2024 22 / 35

Why simulate?

▶ Asses the behavior of your method
▶ Check that your algebra was correct
▶ Approximate the result when it’s hard to get a closed-form

solution

Iteration and Simulation in R September 9, 2024 23 / 35

Simulations in R

▶ For the sake of reproducibility, always set a seed with set.seed()
using any number that comes to your mind as an argument.

▶ You can draw a random sample from a vector or a list with or
without replacement using sample(x, size, replace = FALSE).

▶ You can draw (pseudo-)random samples from well-know probability
distributions using the r_() family of functions:

▶ runif(n, min, max) for a uniform distribution
▶ rnorm(n, mean, sd) for a normal distribution
▶ rpois(n, lambda) for a Poisson distribution
▶ rbinom(prob) for a normal distribution

▶ Sample from a multivariate normal distribution with a specified
covariance structure using mvrnorm(n = 1, mu, Sigma) from the
MASS package

Iteration and Simulation in R September 9, 2024 24 / 35

Simulations in R

▶ For the sake of reproducibility, always set a seed with set.seed()
using any number that comes to your mind as an argument.

▶ You can draw a random sample from a vector or a list with or
without replacement using sample(x, size, replace = FALSE).

▶ You can draw (pseudo-)random samples from well-know probability
distributions using the r_() family of functions:

▶ runif(n, min, max) for a uniform distribution
▶ rnorm(n, mean, sd) for a normal distribution
▶ rpois(n, lambda) for a Poisson distribution
▶ rbinom(prob) for a normal distribution

▶ Sample from a multivariate normal distribution with a specified
covariance structure using mvrnorm(n = 1, mu, Sigma) from the
MASS package

Iteration and Simulation in R September 9, 2024 24 / 35

Simulations in R

▶ For the sake of reproducibility, always set a seed with set.seed()
using any number that comes to your mind as an argument.

▶ You can draw a random sample from a vector or a list with or
without replacement using sample(x, size, replace = FALSE).

▶ You can draw (pseudo-)random samples from well-know probability
distributions using the r_() family of functions:

▶ runif(n, min, max) for a uniform distribution
▶ rnorm(n, mean, sd) for a normal distribution
▶ rpois(n, lambda) for a Poisson distribution
▶ rbinom(prob) for a normal distribution

▶ Sample from a multivariate normal distribution with a specified
covariance structure using mvrnorm(n = 1, mu, Sigma) from the
MASS package

Iteration and Simulation in R September 9, 2024 24 / 35

Simulations in R

▶ For the sake of reproducibility, always set a seed with set.seed()
using any number that comes to your mind as an argument.

▶ You can draw a random sample from a vector or a list with or
without replacement using sample(x, size, replace = FALSE).

▶ You can draw (pseudo-)random samples from well-know probability
distributions using the r_() family of functions:

▶ runif(n, min, max) for a uniform distribution
▶ rnorm(n, mean, sd) for a normal distribution
▶ rpois(n, lambda) for a Poisson distribution
▶ rbinom(prob) for a normal distribution

▶ Sample from a multivariate normal distribution with a specified
covariance structure using mvrnorm(n = 1, mu, Sigma) from the
MASS package

Iteration and Simulation in R September 9, 2024 24 / 35

Simulations in R

Code below draws a sample of size 10 from a normal distribution
𝑁 ∼ (2, 9). Notice that rnorm() takes standard deviation as an
argument.

set.seed(1913)
rnorm(10, mean = 2, sd = 3)

[1] 2.5518011 1.4510111 2.4024628 7.8563368 5.8685697
[5] 1.2261925 4.4455243 1.4427417 1.2056557 0.4351447

Exercise. Write code that simulates four samples of size 10 from
𝑁 ∼ (2, 9) and stores them in a matrix.

Iteration and Simulation in R September 9, 2024 25 / 35

Simulations in R

Code below draws a sample of size 10 from a normal distribution
𝑁 ∼ (2, 9). Notice that rnorm() takes standard deviation as an
argument.

set.seed(1913)
rnorm(10, mean = 2, sd = 3)

[1] 2.5518011 1.4510111 2.4024628 7.8563368 5.8685697
[5] 1.2261925 4.4455243 1.4427417 1.2056557 0.4351447

Exercise. Write code that simulates four samples of size 10 from
𝑁 ∼ (2, 9) and stores them in a matrix.

Iteration and Simulation in R September 9, 2024 25 / 35

Simulations in R
Exercise. Write a code that simulates four samples of size 10 from
𝑁 ∼ (2, 9) and stores them in a matrix. Compute the standard deviation
of all samples.

set.seed(1913)
mat = replicate(4, rnorm(10, mean = 2, sd = 3))
mat

[,1] [,2] [,3] [,4]
[1,] 2.5518011 3.0784887 -2.6326973 4.3435190
[2,] 1.4510111 -0.8759148 -0.1355100 2.1731272
[3,] 2.4024628 0.3439390 0.1473025 -2.9593394
[4,] 7.8563368 -1.1193782 5.4052806 0.7282763
[5,] 5.8685697 4.8227872 0.9050462 -4.1379068
[6,] 1.2261925 1.3159166 0.3614067 8.3662218
[7,] 4.4455243 5.1789005 0.6687443 -0.9804170
[8,] 1.4427417 -1.5692519 7.2304689 2.4781997
[9,] 1.2056557 7.3114470 -5.1163414 1.0089817
[10,] 0.4351447 7.6480081 0.6600551 0.7892954

Iteration and Simulation in R September 9, 2024 26 / 35

Simulations in R

Exercise. Write a code that simulates four samples of size 10 from
𝑁 ∼ (2, 9) and stores them in a matrix. Compute the standard deviation
of all samples.

apply(mat, MARGIN = 2, sd)

[1] 2.406124 3.488646 3.509698 3.571319

Iteration and Simulation in R September 9, 2024 27 / 35

Simulations in R
Exercise. Write a code that simulates samples from 𝑁 ∼ (2, 9) with the
sample size ranging from 10 to 5000 with an increment of 10.

n = seq(10, 5000, by = 10)

Store the resulting samples in a list named samples.

set.seed(1913)
samples = lapply(n, function(x) rnorm(x, 2, 3))
str(samples[1:5])

List of 5
$: num [1:10] 2.55 1.45 2.4 7.86 5.87 ...
$: num [1:20] 3.078 -0.876 0.344 -1.119 4.823 ...
$: num [1:30] 4.344 2.173 -2.959 0.728 -4.138 ...
$: num [1:40] 8.86 7.82 1.92 6.2 5.14 ...
$: num [1:50] 2.448 0.367 7.227 3.466 3.653 ...

Iteration and Simulation in R September 9, 2024 28 / 35

Simulations in R
Exercise. Write a code that simulates samples from 𝑁 ∼ (2, 9) with the
sample size ranging from 10 to 5000 with an increment of 10.

n = seq(10, 5000, by = 10)

Store the resulting samples in a list named samples.

set.seed(1913)
samples = lapply(n, function(x) rnorm(x, 2, 3))
str(samples[1:5])

List of 5
$: num [1:10] 2.55 1.45 2.4 7.86 5.87 ...
$: num [1:20] 3.078 -0.876 0.344 -1.119 4.823 ...
$: num [1:30] 4.344 2.173 -2.959 0.728 -4.138 ...
$: num [1:40] 8.86 7.82 1.92 6.2 5.14 ...
$: num [1:50] 2.448 0.367 7.227 3.466 3.653 ...

Iteration and Simulation in R September 9, 2024 28 / 35

Simulations in R

Exercise. Write a code that computes means of each sample in the
samples list and stores them to a vector means.

means = sapply(samples, function(x) mean(x))
means = map_dbl(samples, function(x) mean(x))

Plot your means against the sample size using:

plot(n, means)

What do you notice? Law of large numbers

Iteration and Simulation in R September 9, 2024 29 / 35

Simulations in R

Exercise. Write a code that computes means of each sample in the
samples list and stores them to a vector means.

means = sapply(samples, function(x) mean(x))
means = map_dbl(samples, function(x) mean(x))

Plot your means against the sample size using:

plot(n, means)

What do you notice? Law of large numbers

Iteration and Simulation in R September 9, 2024 29 / 35

Simulations in R

Exercise. Write a code that computes means of each sample in the
samples list and stores them to a vector means.

means = sapply(samples, function(x) mean(x))
means = map_dbl(samples, function(x) mean(x))

Plot your means against the sample size using:

plot(n, means)

What do you notice?

Law of large numbers

Iteration and Simulation in R September 9, 2024 29 / 35

Simulations in R

Exercise. Write a code that computes means of each sample in the
samples list and stores them to a vector means.

means = sapply(samples, function(x) mean(x))
means = map_dbl(samples, function(x) mean(x))

Plot your means against the sample size using:

plot(n, means)

What do you notice? Law of large numbers

Iteration and Simulation in R September 9, 2024 29 / 35

Simulations in R

1.5

2.0

2.5

0 1000 2000 3000 4000 5000
n

m
ea

ns

Iteration and Simulation in R September 9, 2024 30 / 35

Simulate from a multivariate normal

In some situations, you might want to simulate data with a pre-specified
correlation structure. The mvrnorm(n, mu, Sigma) functions from the
MASS package provides a neat instrument to draw correlated normally
distributed samples.

▶ Suppose you need to draw 𝑘 samples
▶ n is a number of observations in each sample
▶ mu is a vector of 𝑘 means
▶ Sigma is a 𝑘 by 𝑘 matrix that contains variances on the main

diagonal and covariances off the main diagonal

Iteration and Simulation in R September 9, 2024 31 / 35

Simulate from a multivariate normal

In some situations, you might want to simulate data with a pre-specified
correlation structure. The mvrnorm(n, mu, Sigma) functions from the
MASS package provides a neat instrument to draw correlated normally
distributed samples.

▶ Suppose you need to draw 𝑘 samples
▶ n is a number of observations in each sample
▶ mu is a vector of 𝑘 means
▶ Sigma is a 𝑘 by 𝑘 matrix that contains variances on the main

diagonal and covariances off the main diagonal

Iteration and Simulation in R September 9, 2024 31 / 35

Simulate from a multivariate normal

install.packages("MASS")
library(MASS)

set.seed(1913)
draws = mvrnorm(1000, mu = c(0, 1),

Sigma = matrix(c(4, 2,
2, 4),

ncol = 2, byrow = T))

Checking means

apply(draws, MARGIN = 2, mean)

[1] -0.02293701 0.97332208

Iteration and Simulation in R September 9, 2024 32 / 35

Simulate from a multivariate normal

install.packages("MASS")
library(MASS)

set.seed(1913)
draws = mvrnorm(1000, mu = c(0, 1),

Sigma = matrix(c(4, 2,
2, 4),

ncol = 2, byrow = T))

Checking means

apply(draws, MARGIN = 2, mean)

[1] -0.02293701 0.97332208

Iteration and Simulation in R September 9, 2024 32 / 35

Simulate from a multivariate normal

Checking standard deviations

apply(draws, MARGIN = 2, sd)

[1] 2.011650 2.017546

What is the correlation between the samples? 0.5

Iteration and Simulation in R September 9, 2024 33 / 35

Simulate from a multivariate normal

Checking standard deviations

apply(draws, MARGIN = 2, sd)

[1] 2.011650 2.017546

What is the correlation between the samples?

0.5

Iteration and Simulation in R September 9, 2024 33 / 35

Simulate from a multivariate normal

Checking standard deviations

apply(draws, MARGIN = 2, sd)

[1] 2.011650 2.017546

What is the correlation between the samples? 0.5

Iteration and Simulation in R September 9, 2024 33 / 35

Simulate from a multivariate normal
Exercise. Write a function that samples 𝑛 rows from draws and returns
correlation between the samples using cor(x, y). Run this function
with 𝑛 = {25, 50, 100}. Store results in a vector.

sample.cor = function(mat, n){
id = sample(1:nrow(mat), n)
s = mat[id,]
r = cor(s[,1], s[,2])
return(r)

}

set.seed(1913)
out = map_dbl(c(25, 50, 100),

function(x) sample.cor(draws, x))
out

[1] 0.3893528 0.4602316 0.5264837

Iteration and Simulation in R September 9, 2024 34 / 35

Simulate from a multivariate normal
Exercise. Write a function that samples 𝑛 rows from draws and returns
correlation between the samples using cor(x, y). Run this function
with 𝑛 = {25, 50, 100}. Store results in a vector.

sample.cor = function(mat, n){
id = sample(1:nrow(mat), n)
s = mat[id,]
r = cor(s[,1], s[,2])
return(r)

}

set.seed(1913)
out = map_dbl(c(25, 50, 100),

function(x) sample.cor(draws, x))
out

[1] 0.3893528 0.4602316 0.5264837

Iteration and Simulation in R September 9, 2024 34 / 35

Simulate from a multivariate normal
Exercise. Write a function that samples 𝑛 rows from draws and returns
correlation between the samples using cor(x, y). Run this function
with 𝑛 = {25, 50, 100}. Store results in a vector.

sample.cor = function(mat, n){
id = sample(1:nrow(mat), n)
s = mat[id,]
r = cor(s[,1], s[,2])
return(r)

}

set.seed(1913)
out = map_dbl(c(25, 50, 100),

function(x) sample.cor(draws, x))
out

[1] 0.3893528 0.4602316 0.5264837

Iteration and Simulation in R September 9, 2024 34 / 35

Further reads

▶ Hadley Wickham and Garrett Grolemund, R for Data Science
▶ Hadley Wickham, Advanced R

Iteration and Simulation in R September 9, 2024 35 / 35

https://r4ds.had.co.nz/index.html
https://adv-r.hadley.nz/index.html

